Local Convergence of Adaptive Methods for Nonlinear Partial Differential Equations

نویسنده

  • MICHAEL HOLST
چکیده

In this article we develop convergence theory for a general class of adaptive approximation algorithms for abstract nonlinear operator equations on Banach spaces, and then use the theory to obtain convergence results for practical adaptive finite element methods (AFEM) applied to several classes of nonlinear elliptic equations. In the first part of the paper, we develop a weak-* convergence framework for nonlinear operators, whose Gateaux derivatives are locally Lipschitz and satisfy a local inf-sup condition. The framework can be viewed as extending the recent convergence results for linear problems of Morin, Siebert and Veeser to a general nonlinear setting. We formulate an abstract adaptive approximation algorithm for nonlinear operator equations in Banach spaces with local structure. The weak-* convergence framework is then applied to this class of abstract locally adaptive algorithms, giving a general convergence result. The convergence result is then applied to a standard AFEM algorithm in the case of several semilinear and quasi-linear scalar elliptic equations and elliptic systems, including: a semilinear problem with subcritical nonlinearity, the steady Navier-Stokes equations, and a quasilinear problem with nonlinear diffusion. This yields several new AFEM convergence results for these nonlinear problems. In the second part of the paper we develop a second abstract convergence framework based on strong contraction, extending the recent contraction results for linear problems of Cascon, Kreuzer, Nochetto, and Siebert and of Mekchay and Nochetto to abstract nonlinear problems. We then establish conditions under which it is possible to apply the contraction framework to the abstract adaptive algorithm defined earlier, giving a contraction result for AFEM-type algorithms applied to nonlinear problems. The contraction result is then applied to a standard AFEM algorithm in the case of several semilinear scalar elliptic equations, including: a semilinear problem with subcritical nonlinearity, the Poisson-Boltzmann equation, and the Hamiltonian constraint in general relativity, yielding AFEM contraction results in each case. Date: January 8, 2010.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

On the convergence of the homotopy analysis method to solve the system of partial differential equations

One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...

متن کامل

Modified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations

As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Adaptive Steffensen-like Methods with Memory for Solving Nonlinear Equations with the Highest Possible Efficiency Indices

The primary goal of this work is to introduce two adaptive Steffensen-like methods with memory of the highest efficiency indices. In the existing methods, to improve the convergence order applied to memory concept, the focus has only been on the current and previous iteration. However, it is possible to improve the accelerators. Therefore, we achieve superior convergence orders and obtain as hi...

متن کامل

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008